Teorem petala

Dalam mekanik klasik, teorem petala memberikan ringkasan dalam graviti yang boleh digunapakai pada objek-objek di dalam atau di luar satu jasad bersimetri sfera.

Isaac Newton telah memberi pembuktian teorem petala dan menyatakan bahawa:

  1. Jasad tersimetri sfera memberi kesan tarikan graviti kepada objek-objek luaran seolah-olah semua jisimnya tertumpu pada satu titik di pusatnya.
  2. Jika sesuatu jasad berbentuk petala bersimetri sfera (seperti bentuk bola berongga), tiada daya graviti bersih akan dikenakan pada objek di dalamnya oleh petala tersebut, tanpa mengira kedudukan objek di dalam petala tersebut.

Ekoran daripada ini, di dalam sfera pejal berketumpatan malar, daya graviti berubah secara linear mengikut jarak daripada pusat dan menjadi sifar melalui simetri di pusat jisim.

Pernyataan di atas boleh diterbitkan dengan mudah: jika satu titik dipilih di dalam sfera seperti di atas, pada jarak daripada pusat sfera, maka petala-petala berjejari lebih besar boleh tidak diambil kira mengikut teorem petala. Maka, jisim yang tinggal adalah berkadaran dengan , dan daya graviti yang dikenakan padanya adalah berkadaran dengan , yakni , maka ia linear dengan .

Hasil ini penting dalam analisis pergerakan planet oleh Newton; ia tidak ketara secara terus, tetapi ia boleh dibuktikan dengan kalkulus. (Sebagai alternatif, Hukum Gauss untuk graviti memberikan cara yang lebih ringkas untuk membuktikan hasil yang sama.)

Selain graviti, teorem petala boleh juga digunakan untuk menerangkan medan elektrik yang dijana oleh ketumpatan cas statik bersimetri sfera, atau sebarang fenomena lain yang mengikuti hukum kuasa dua songsang. Terbitan di bawah memfokuskan berkenaan graviti, tetapi hasil yang sama boleh diitlak dengan mudah bagi daya elektrostatik.


Developed by StudentB